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Mathematical Foundations of Flip-Flops 

by Vera Pless 

Section 1 - Introduction 

My interest in tliis topic was aroused by conversations with 

Edward Fredkin and Frank Manning.  I found Frank Manning's thesis [ 2] 

on this topic a useful reference.  The main purpose of this paper is 

to lay a mathematical basis for the study of flip-flops.  I feel that 

this approach will lead, in further studies, to important practical re- 

sults although the alert reader can see some practical applications in 

this work. 

A J-K flip flop is a device with 2 inputs (zero or one) and two 

outputs, one of which is always the complement of the other.  A counter 

is a set of n J-K flip-flops whose inputs are either constants (0 or 1) 

or outputs of other flip-flops in the counter.  In this paper we only 

consider J-K flip-flops whose inputs are outputs of the other flip-flops. 

Whenever we refer to an n-counter, we shall mean such a counter with no 

constant inputs.  As in Manning's paper we do not consider flip-flops 

whose inputs arise from their own outputs.  The specification of the 

connections is called the connection list (abbreviated (CL) of the counter 

Consider the following example when n = 3. 

^L. 
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^ and ^ are the inputs to flip-flop i. and Q. and Q. (the complement 

of Q.) are Uli ou-.puts.  m thl. example Q2 is connected to J and K , 

Q3 is connecteo to J2 and K.,. and Qj is connected to J3 while Q is 

connected to ^.  For brevity we represent this connection list as 

follows: 

(2'2) (3.3)     (i.I) 

The  numbers on  the  first   lin« represent the  flip-flops  i while  the 

pairs  below describe  the counters connected  to J.   and |L.     Clearly it 

is  possible to  translate a description like this  into a diagram as above 

or   to go from a diagram to such a shortened description.     The  first  of 

a pair  of components  refers  to  the J input,   the second  to  the K input. 

We call  this description a connection list.     For  example,   ^he connection 

list ' 2 3 
describes  the  following 

r.. 
3-counter. 

0 (3. 1) (1.2) 

a esci 

1 
• 1 

H   — 
r 

Ki 

Ql s 1 — J2 
2 «2 — J3 

K3 

3 

k ■ 

/ 

-fc.  - ^ m^ 
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After a clock pulse, the outputs of each flip-flop change depending, 

or. the previous outputs and the inputs according to the following 

rules. 

Input (0,0) leaves tiie output unchanged. 

Input (1,1) changes output. 

input (0,1) produces a 0 output. 

Input (1,0) produces a 1 output. 

12         3 
Thus if the 3-counter is    —   and the first 

(2,2)    (3,3)     (1,1) 

output is (0,0,0), the sequence of outputs and consequent inputs is as 

The triples are the outputs of this 

3-counter in the order in which they 

are generated.  The pairs beneath an 

output are t.ie next input sequences, 

i.e., the next set of (J ,K ), i = 1,2,3, 

iollows: 

0 0 0 
(0,0) 

0 
(0,0) 

0 
(1,0) 

1 
(0,0) 

0 
(1,1) 

1 
d.O) 

1 
(l.D 

1 
(1,1) 

0 
(1,0) 

1 
(0,0) 

1 
(1,1) 

1 
(0,1) 

0 
(1,1) 

0 
(0,0) 

1 
(0,1) 
0 

(1,1) 
1 

(0,0) 
1 

(1,0) 
1 

(1,1) 
0 

(1,1) 
0 

(0.1) 
0 

From now on when we speak of an n-counter we shall mean one with a 

fixed connection lisc.  In section 2 the number of n-counters is shown 

to be [2n - 2]  .  Also in section 2 we associate a matrix M with an 

n-counter.  Given any output sequtice S, S determines the next input 

sequence.  Here we show that this input sequence is actually SM where 

.' is a vector determined by S,  In addition we give an algorithm (2,4) 

for determining which, if any, n-counter can produce a fixed sequence 

KfflBlii fl 
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of outputs.  M is easily determined by the connection list of an n- 

rounter and vice versa. 

In section 3 we give a simple algebraic transformation N which 

operates on outputs and produces the next output from a given output. 

N is easily determined by M and conversely.  For the example above, the 

transformation N is        c      A11 „JJ.... 
(a + b)    (b + c)     ä  '  A11 addltions are 

mod 2,  Applying this transformation to 000 yields the same output 

sequence as before.  Each output is computed from the previous one by 

0  0  the above output rule.  Previously, we deterndned this 

0 1      sequence of outputs by using the inputs and the rules for 

1 0  obtaining an output from a given input.  Using N wc can go 

1  directly from one output to the next output. 
0  0  0 

Simple rales for going from M to N and back again are given.  Con- 

ditions under which N can be represented by a matrix art given.  The 

complete form of a transformation N which correspond to the action oj 

an n-counter is determined.  Algorithm 3.2, using the N transformation, 

decides which, if any, n-counters produce a given sequence of outputs. 

In section 4 we describe the directed graph of an n-counter.  The 

vertices of this graph are the 2n possible output with an edge going f 

vertex S. to vertex ^ if S. exactly preceeds S..  An n-counter is .aid 

to N cyclic if its graph is the union of disjoint cycles,  m other 

words, an n-cour.ter is cyclic if starting from any output, there is a 

sequence of outputs which returns to it.  It is shown that an n-counter 

is cyclic if and only if there is an i so that N1 = I where I is the 

identity transformation.  Special results for the case when N is a per- 

mutation matrix are given.  For any n-counter, if k is the l.c.m. of the 

rom 

■ ' MÜ 
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cycle lengths then there is a geometrically determined non-negative 

integer j so that k is the smallest positive integer with the property 

k+ i    1 
that N J = N.  For a cyclic counter, j = 0. 

In section 5 we relate an n-counter to a group H,  H is generated 

by all permutations on the n objects a ,..., a  (with simultaneous action 

on a  ,,.,a ) and tne permutations interchanging a. and a., i = l,...,n. 
In ii 

The order of H is (nl)2 .  The subgroup of H leaving the N transforma- 

tion of an n-counter C invariant is called the group G of C.  Each 

element in G is an isomorphism of the graph of C.  Two n-counters are 

called equivalent if there is an element in H sending one onto the other. 
f 

Equivalent n-counters have isomorphic graphs and isomorphic groups. 

The number of counters equivalent to C equals nl 2  divided by the order 

of G. 

Since equivalent n-counters have the same properties, if one were 

to classify all n-counters for a fixed n it is sufficient to do this 

by equivalence classes.  This procedure is illustrated in section 6 for 

all 2-counters.  The sixteen 2-counters fall into 4 equivalence classes, 

three of them cyclic. 

.J 
■ i Mti 
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Section 2       The  M-matrix 

Suppose we have  an n-counter  C whose connection  list  is  the 

1  2   

(al'al) (a2,a
,
2) 

n n 

Here each a, or 

.1 

ai     is some j or j .  Let M be the (2n) x (2n) matrix whose rows and 

columns are marked 1, 1', 2, 21, ...,n, n', and whose entries are zero 

and the following ones. 

1 in row a, and column i if a  = i 
i i   J 

1 in row a. and column i' if a.' = i 
i i   J 

1 in row a.' and column i  if a. =   \ 
i i   J 

1 in row a.  and column i' if a ' « i. 
i 1   J 

An M-matrix has exactly one one in any column.  Further it has 

zeros on all 2x2 diagonal blocks (since we do not allow the inputs of 

a J-K counter to com., from its own outputs).    There is clearly a one to 

one   correspondence between n-counters and 2n x 2n matrices M whose 

entries are 0 and 1, which have exactly one one in each column, and 

whose 2x2 diagonal blocks consist entirely of zeros.  From this 1:1 

correspondence we see that there are (2n - 2) n n-counters. 

As examples we list the M-matrices for the two connection lists 

which appeared as examples in sections 1. 

Example 2.1 

 1 2 3 

(2,2) (3.1) 

1' 

(1.2) 

2 •   3  3 • 

M 

1 0 0 0 1 l   o U I1 0 0 0 0         1 
2 1 1 0 0   '    0 j 
2' 0 0 9 9 0 (L 
3 0 0 0 0 0 
3' 0 0 0 0 0 0 

/ 

' -> -^ — ■rM* 
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Example 2.2 

1      2 

^2.2)    (3,3) (1.1) 

1 1' 2 2' 3 3' 
1 0 0 0 0 0 1 
1' 0 0 0 0 1 0 

0 2  i i 0 0 0 
2' 0 0 0 0 0 0 
3 o" ■'0 1 1 0 0 
3' 0 0 0 0 0 0 

M 

Any output S of a given n-counter C is an n-tuple of zeros and 

ones.  To this n-tuple associate a 2n-tuple of zeros and ones S by 

replacing every zero by the pair 0,1 and every 1 by the pair 1,0.  The 

next theorem tells us how we obtain the next set of connection pairs 

from S and M. 

Theorem 2.3.  Let C be a fixed n-counter and let M be its M-matrix. 

If S is an output of C, then the next set of input pairs, called P, is 

equal to S_ M. 

Proof:    The theorem follows by the definitions of the various elements 

in it. 

In section 1, the outputs and sets of connection pairs of 

example 2.2 were given. Each set of ncnnection pairs can be found fi om 

ehe immediately preceeding output by the theorem. For example, given 

the output S ■ 001, we construct the next set of connection pairs as 

follows.  S = (0,1,0,1,1,0) so that 

S M = (0,1,0,1,1,0) 0    0 
0    0 

0    0 
0    0 

0 1 
1 0 

1  1 
0    0 

0    0 
o   9 

0    0 

9   0 

0    0 
0    0 

1   1 
0    0 

0 0 
0    0 

(0,0,1,1,1,0) = (0,0) (1,1) (1,C) 

I I M>  i 
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One of the important consequences of this theorem is algorithm 

2.4 which determines the n-counter C which could produce a fixed set 

of outputs.  Given a set of k. outputs in a fixed order (i.e. k n-tuples 

of O's and I's, S ,... ,S ) then there are the following three possibilities, 

1) Th^re is no n-counter which pioduces S..,...,S as a set of 

outputs. 

2) There is exactly one n-counter which produces S ,...,8, as 

a set of outputs. 

3) There is more than one n-counter which produces B.t«*«(8. as 

a set of outputs. 

Algorithm 2.4 distinguishes between these three cases and in 

cases 2 and 3 give the specific n-counter or n-courters which produce 

the given sequence. 

Algorithm 2.4. 

Given S.,...^ , k n-tuples of O's and I's, this algorithm gives 

a procedure for determining all n-counters (if any exist) which can 

produce this sequence of outputs. 

Let S. = (a, ,...a ) and S  1 = (ß.,...^ ) then there are exactly 

2 input pairs which take any a. to ß .  If a = ß. = 0 these are (0,0) 

and (0,1).  If a. - ß = t, these are (0,0) and (1,0).  If a. = 0 

and ß. = 1, these are (1,1) and (1,0), while if a = 1 and ß  = 0, these 
j J        j 

are (1,1) and (0,1). 

/ 

\ 

Let S , ...,S^ be the k (2n)-tuples of O's and I's associated with 

S,,...,S, .  We start with a partially filled in M and compute S. M. 
Ik —i 

As we explain below this procedure determines other entries in M. We 

step when we have computed all S_^M, i = l,...,k-l. We then know that 

•M I  I  »Wi  I 
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either M cannot exist (so no n-counter could produce the sequence of 

outputs), or exactly which matrices M could realize, this sequence. 

We start with placing 2x2 blocks of zeroes on the diagonal of M. 

As we proceed we bear in mind that each column of M must have exactly 

one one; the other entries are 0.  So if we put a one in any column, 

we can mak- the other entries 0. We know that S.  M equals the set 
—i 

of input pair:- which send S. = (a,.... ,a ) into S. ,, = (ß,,.. ,ß )• '   r i    1     n       i+l    1     n 

For each a. and ß. there are two possible input pairs which send a, 
J J J 

into ß.. These are given above. Notice that in each case these pairs 

have a common component.  Hence the proc'act S^. M (given that S   . is 

the next output) produces constraints on n of the 2n tilumns of M. 

We fill in these columns to satisfy these constraints.  If we cannot, 

then M cannot exist. When we have finished computing S. M i = 1, ..., 
—i 

k - 1, we have either determined 

1) M cannot exist.  This happens when the construction of M 

based on outputs S ,...,S cannot possibly send S  into S.   .». 

2) A specific M has been constructed (all blanks have been 

filled in and M sends each S  into a set of input pairs which pro- 

duces si + 1). 

3) More than one M is possible. This happens when no contradiction 

occurs but when then are still a number of blanks in M.  These can 

then be filled in in any way providing each column of M has exactly 

one 1.  Each of these ways corresponds to a different n-counter. 

Another «igorithiü (3.2) based on the N-transformation is given in 

sectioai3.  Both algorithms accomplish the same task. 

"">» -  •  L^t ■ I* 
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Example  2,5:    We give an example  of  the use of  algorithm  (2.4) 

Assume we have   the   following sequence  of  outputs. 

000, 
S, 

Oil,       110,       100,       HI,       001,       000. 

'1 "2 3 

Tlie first partial M is 

0 0 
0 0 

B ö 
0 0 

0  0 
0  0    ] 

In computing S. M we write below M the 3 sets 

of 2 possible input pairs. We use this to add entries to M. 

^ = (0,1,0,1,0,1) 

(0, 1, 0, 1, 0, 1) 0 0 

0 0 

0 0 

0 
0 0 
0 0 

0 

0 0 0 

0  0 

0 0 1 1 1 1 

0 1 1  0 1  0 
Possible input pairs to send 01 into 

The checked columns are the ones where the connection pairs have a common 

entry. We are able to make entries into these columns, and these entries 

are shown. We continue in this fashion. 

S0M: (0,1,1,0,1,0) 0 0 0 0 0 

0 0 0 

0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 

1 1 0 0 1 1 

1 0 1 0 0  1 
>l 

0 1  possible input pairs. 

4 

- ^— 
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S3 M: (1, 0. 1, 0, 0, 1) 

S^ M:    (l,0,0.1,0;l) 

^5 
M: (1.0.1,0,1,0) 

h M: (0,1,0,1,1.0) 

0 0 0 0 0 

0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 1 1 0 0 

1 0 0 1 0  1 
possible input pairs 

TT 
0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

0 0 0 0 1  0 

1 0 0 0 0 

0 0 1 0 0 

0 0 1 1 1 1 

I ft IB 1 0 
r • s 

possible input pairs 

0 0 0 1 0 0 

0 0 0 0 0 1 

0 0 0 0 0 

0 0 0 0 1  0 

1 0 0 0 0 

0 0 1  0 0 0 

1 1 1 1 0 0 

0 1 0 1 1  0 
• s • 

possible input pairs 

0 0 0 1 0 0 

0 0 0 0 0  1 

1  0 0 0 0 0 

0 0 0 0 1  0 

0  1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 1 1 

0  1 0 1 0  1 
« possible input pairs 

• ■ ~^ m*m 
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Hence M is unique and is 0 0 0  1 0  0 

0 G 0 0 0 1 

1 0 0 0 C 0 

0 0 0 0 1 0 

0  1 0 0 0 0 

0 0 1  0 0 0 

From M we read off its 3 counter. 

(2.3) (3.1) (7.1) 

Note that if w» had asked for a 3-counter which has S, through S, as 
1 b 

successive outputs (with no requirements about the successor of S ) then 

we would not only have the M above but also 

Ml = 
0 0 0 1 0    0 

0 0 0 0 0    1 

0 0 0 0 0    0 

0 0 0 0 i    0 

1 1 0 0 0    0 

0 0 1 0 0    0 

so tnat there would be 2 possible 3-counters, 

the one above and the following one corresponding 

3 
to M 

1 
(3.3) (3,1) (2.1) 

This   3-counter  takes S.   to S_,  S-   to S_,   S_   to S   ,  S.   to S. ,   Sc   to S, 
1 i- i- JJ L        ^ J J • 

and St   to  100. 
o 

, 
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Section 3.  The Transforiration N 

In this section we show that givei any n-counter C there is a 

transformation N wh^ch takes any output b  and produces the next 

output S.   ,   In other words if S. = (cs, ,... ,a ), then S.   .. = 
i+1. iln        i+1 

(0.i«»>tP ) where each ß. can be expressed as a certain set of sums 
In i 

and products (mod 2) of specified a's. The rule for obtaining S. + 1 

from S. is the N transformation. It is surprising that given an 

n-counter such an N-transrormation exists. We will demonstrate how 

to obtain N from M and conversely. This is quite easy. The complete 

form of any such N will be given. N is not always a linear transfor- 

mation as M is but it sometimes is linear. It is fairly obvious from 

properties of M whether or not N will be linear. 

In order to determine N we assume we have an n-counter C and an 

output S. = (a,,...,a ) where each a.is 0 or 1. With each a. is r   i    1'   ' n i i 

associated an input pair (a .a.1).  Let S   . = (ß.,...^ ).  Then 

the i  component of the next output, ß , is determined bv a. and the 

pair (a1,a
,
i) a8 follows 

Identity 3.1 ß. = (a a. ' + (1 + (X.) ai + o^) (mod 2) 

Identity 3.1 can be verified computationally for each specific 

possiblity.  This identity reflects the fact that the rules governing 

outputs in a J-K flip flop act like an affine transformation followed 

by a dot product. 

- 

^li 
\.. 
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Using iaentity 3.1 we can determine Lru» form of ß. for the three 

different types of connection pairs (a.,a ') 
i' 1 

Case I a)  (ai,ai
l) = (j,j) b)  (a.,a.') = (j,j) 

In case a), ß. ■ (a.j + (1 + a )j + a.) (mod 2) 

= (a. + j) (mod 2) 

Similarly, in case b)  ß. = (a. + j). 

Case II.    a)  (a^ ai') = (j,j) b)  (a^a^) = (J.j) 

In case a), ß. = (a. j + (1 + a.)j + a.) (mod 2) 

= (a. (1 + j) + (1 + a^ j + a.) (mod 2) 

Similarly, in case b) ß. = j 

Case III.   a)  (a ,a.') = (j,k). 

c)  (a^a.') - (J,k) 

b)  (a^a^^ = (j,k), 

d)  (a^a^) = (J,k) 

For case a) ßi = (aj^ k + (1 + a ) j + a.) (mod 2) 

■ Q^ (j + k) + j + a.     (mod 2) 

Similarly, in case c)  ß. = t». (j + k) + j + a. = a. (j + k) r j 

In case d)  ßi = 0^(7 + k) + J + ^ = ai(j + k) + ^ + j + 1 

If S  = (a a ) and the next output S   = (ß ,...,ß  then ß  is 
wk X H A. i1 X X ll X 

always obtained from a. by a transformation of the form given in Case I 

or Case II or Case III. We call N which consists of these n transforma- 

tions cf a. into ß , the transformation of the n-counter C.  If all 

the n transformation? in N fall unc'-ir cases I or II, then N is a linear 

transformation and its matrix can be obtained from the matrix of M by 

putting I's on the diagonal, for any column pairs i, i1, whenever case I 

mmmm 

* -»-^ mam 
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occurs.  If all the n transformations in N fall under case II, we 

call N a permutation and the matrix of N is M.  If in addition, N 

sends distinct a  into distinct j (or their complements), then we call 

N a strict permutation.  The matrix of a strict permutation has exactly 

one non-zero element in any row or column and so represents a permuta- 

tion on 2n objects.  Of the (2n-2)  n-counters [4(n-l)]  are linear 

and [2(n-l)]  of the linear ones are permutations.  It is clear that in 

all three cases the transformation N can be easily obtained from the 

connection list or the matrix M and conversely.  We will illustrate this 

by examples. 

Example 2.1 

has its N transformation 
as follows. 

(2,2) (3.1) (1.2) 

afb b((H-a>fe+-b c(afb)+a 

This is non-linear since the 

b and c images are non-linear, 

To obtain any output from a given one, we merely apply these rules 

modulo 2, for example if, S = 000, S, =• 001 where the first 0 is 

0 + 0(a + b), the second 0 is 0(0 + 0) + 0 (b(c + a) -f c + b), and the 

1 is 0(0 + 0) + 1 (c(a + b) + a).  Clearly S3 = 0 1 1 etc. 

Example 2.2 

1        2 3 

(2,2)     (3,3) 

Its N transformation is 

a        b 

a -f b b + c 

(1.1) 

and is clearly linear although 

not a permutation since the 

transformations on a and b 

are not permutations. 

^^ 
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M 

0    0 ü 0 0     1 

0    0 0 0 I     0 

1   1 0 0 0    0 

0    0 0 (1 0    0 

0    0 1 1 0    0 

.0 0 0 0 0    0 
• 

and N = 

s 
1 0 0 0 0 1^1 
0 1 (1 0 1 0 

1 1 1 0 0 0 

0 0 I) 1 0 0 

0 0 I 1 0 0 

0 
k 

0 0 0 0 0 
4 

To obtain the succeeding output from a given output S, one can apply the rule 

given by N or else compute £ N. For instance, if S =000, then Sj = 

(0, 1, 0, 1, 0, 1) and 

S^ N =  (0, 1, 0, 1, 0, 1) 1    0 0 Ü 0     1 

0     1 0 0 1     0 

1   1 1 0 0    0 

0    0 0 1 0    0 

0    0 1 1 0    0 

0    0 
V 

0 0 0    0^ 

= (0, 1, 0, 1, 1, 0) which 

means S- = 0 0 1. 

We now give algorithm 3.2 based on the N transformation.  As the 

previous algorithm based on the M matrix does, this alcorithm determines 

the possible, if any, n-counters which can generate a given sequence 

of outputs. 

Algorithm 3.2 

Suppose we have a sequence of k outputs S..,...^ which we presume 

to be generated by an n-counter.  Then knowing the for .a that N can take, 

we can solve n(k - 1) equations for the unknown parameters.  In other 

wi.rds, if S. = (a ,..., a ) and S  .. = (b.,...,b ) then b is a linear 

combination, with coefficients 0 and 1 of l,a ,...,3 and possibly a 

term in a times the sum of a pair from the set {a a -.a^.,...^ ], 

Hence there are (n + 1) + l  2 J coefficients to determine and 

<-- 

_.-•> 

———— 

- -    l i^Jfc 
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n(k - 1) equations.  In addition, these coefficients must satisfy cer- 

tain constraints, namely, there is exactly one non-zero coefficient 

of an a (for k ^ j/ aid at most one non-zero coefficient of a. times 
K. J 

a
k 

4 A
B (t>£*  !)• 

We illustrate this method by the sequence of outputs 000, Oil, 100, 

111, 001, 000 (this is the same example we used for algorithm 2.4).  The 

general form for a 3-ccunter is given below.  At the left side we list 

the outputs.  On the same line with an output is the 3 equations it 

determines.  The constraints.' mentioned above imply the three equations. 

Oj "^ a4 = 1, ß2 + ß4 = 1, and Y2 + Y3 = I. 

0 0 0 
a..a(b+c)+a2a<-a3tH-a, ct-ar ß1b(afc)+ß2a+ß3bfß4c+ß    I    V^afbH^af Y.^ Y4c-I- 

Yc 

0 1 1 

1 1 0 

1 0 0 

1 1 1 

0 0  1 

0 = aP 

1 = a04 a,    known 
J       4 

1 = a1+a2+ a3 

a. 

0 = 1 + a. + a. 
3       4 

known 

1  =  ßc 

1 = ß1+ß3+ß4+l 

0 =  l+ß2+ß,+l 

1 = ß2+l;  ß2=0 

Hence 
^3 = 0. 

h  = 1, 
ßl = 

1 

Hence this trans- 
formation Is deter- 
mined as 

b 

b(afc)+of 1 

0 =  1(1+1)+1+1 
checks 

1 =  Y^ 

0 =   Y+Y+Y+l 
13     4 

0 =   Y2+Y3+l; 

known 

1=Y2+1;  Y2 = 0 

Hence  Y3 =  1 

1=1+Y/ + 1:Y/=1 
and   Y =1 

^L. MM 
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Hence  this   trans- 
formation is 
determined as 

c 

c(afb)+b+ c+1 

0 0 u 0   =  0, 0 = 0(Ofl)+1Jl 0 =  l(OfO)+Ofl+l 

checks checks 

Hence QU  = a,   =   1  and 

this   transformat   on  is 

a 

a(b +  c) +  a + b 

As does algorithm (2.4), algorithm (3.2) determines that a) no counter 

can generate the sequence of outputs, b) rxactly one counter can and 

c) more than one counter can.  In case c), some indeterminates will not 

be determined.  They can be specified in any way consistent with the 

constraints (i.e.  in looking for the rule taking a. to its successor, 

there is exactly one non-zero coefficient of an a  (k i^ j) and at most 

one non-zero coefficient of a. times a. + a« (k, £ 4 ]). 

-> 

/ 

^L- 
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Section 4 

The Graph of an n-Counter 

If C is an n-counter then the action of C on an output is given 

by an M transformation of a certain form.  Given such an N, we define 

the transformation N  in the usual way, i.e., N  is defined inductively 

on any sequence S of zeroes and ones by Ni(S) = N (Nl'1(S)).  If N is 

of the form which gives rise to an n-counter, it does not follow that 

N is of that form, it may be or it may not be.  However, N1 must be 

of the following general form.  If S = (a.,...,a ) (all a 's are 0 or 1) 
1     n       i ' 

and N (S) = S' = (b^...,^) (again all b. are 0 or 1), then the trans- 

formation taking a^^ to bi is of the following form:  b. is a linear com- 

bination of the (2n - 1) products of a.,...,a and ß can be 0 or 1.  One 
i     n 

transformation of this form is the identity transformation, denoted by 

I, where I(S) = S for any S.  I does not give rise to an n-counter, 

however the existence of an i such that JT =  I gives important infor- 

mation about an n-courter as we see below. 

Let C be an n-counter. We associate with C a directed graph R 

whose vertices are the 2n n-tuples of O's and I's. We draw an arrow 

from a vertex Si  to another 1^ if i   is the output directly 

sicceeding S^  We say that the counter C has an s-cycle if R has a 

cycle of length »,  We illustrate this by the examples below. 
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Example 4. I 
r 
0 0 0 0 1 0 

0 ) 0 0 0  1 

M = i 1 0 0 0 0 

0 0 0 0 0 0 

0 0 1 1 0 0 

0 0 0 0 0 0 

N is 

(afb) (b+c) 

(0,1,1 

(0:0,0)  (1,1,0)| 

(0,1,oY 

N  = I 

,0,0) 

C has a 7-cycle and a 1-cycle 

N sends (0,0,0) onto itself, and wt call it a 1-cycle. 

Example 4,2 

M = 

^ 
0 0 0 0 0 0 

0 0 0 0 0 0 

1   1 0 0 1 0 

0 0 0 0 0 1 

0 0 1 1 0 0 

0 0 

> 

0 0 0 0 

N is 

(afb)|(bfc) b 

N3 = I 

(0,1,0)   (1,1,0) (0,0,0) 

(1,0,0)   (0,0,1) (1.1,1) (1,0,1) (0,1,1) 

C has 2 3-cycles and 2 1-cycles 

Example 4.3 

M 

• •^ 
0 0 0 0 0 0 

0 0 0 0 0 0 

1 1 0 0 0 1 

0 0 0 0 1 0 

0 0 1 1 0 0 

0 0 0 0 0 0 
• 

N is 

(afb) (bfc) 

(1,1,0)    (1,1,1 

[   (i.o,P 
(0.1.0)    (lt 

6 
N = I 

C has a 6-cycle 

and a 2 -cycle. 

(0,0,0) 

^(0,0, 1) 

(0,1,1) 
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Example 4.4 
' 

0 0 0 0 1   1 

0 0 0 0 0    0 

1 1 0 0 0    0 

0 0 0 0 0    0 

0 0 1 1 0    0 

0 0 0 0 0    0 

N is 

(afb) 

(1.1,1) 

(0.0,0) 

(bfc) 

4 
N = N 

(afc) 

(1,0,1 
(1.0,0) 

(0,0,1) 

(1,1,0) (0.1,1) 

C has a 3-cycle and a 2-cycle. 

An n counter is called cyclic if given any sequence S, there is a 

set of succeeding outputs S,S ,....S  = S returning to S.  In terms of. 

the graph of C, an n counter is cyclic if and only if its graph  is the 

union of disjoint cycles.  Theorem 4.6 demonstrates the very interesting 

fact that an n-counter is cyclic iff there exists an i such that N = I. 

In order to prove this theorem we need Lemma 4.5. 

First some notation. 

Let a,,...,a be n variables which assume the values 0 or 1.  Let 
i     n 

fi(a ,...,a ) be the set of all distinct (2 - 1) products of a ,a 
In x       r In 

and the number 1. We define a form on (a,,...,a ) to be a linear com- 
1     n 

bination of elements of     n(a. a ) with coefficients 0 or 1. 
1     n 

If L is a form on (a ,...,a ) and S Is an n-tuple of O's and I's, then L(S) 

is the value (either 0 or 1) which L assumes (mod 2) when the ith com- 

ponent of S is substituted for a for all i between 1 and n.  An ixample 

of a form on (a^a^ is a^ + a2 + 1.  If S = (0.1), L(S) = 0.1 + 1 + 1 = 

0 (mod 2). 

...y 

:v 
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Lemma 4.5 

If L, and L„ are two forms on (a.,...,a ) and Li(S) = L„(S) 
12 1     n      x      ^ 

for any n-typle S of O's and 1's, then L1 is identically equal to L2. 

Proof:    The proof is by induction on n.  If n • I, L. ■ P- •- + $2 

where ß1 ß2 e {O.lj.  Also L2 - Yla1+V2 
£or >'i'Y2 e ^(;'1^ '  If s = 0» 

L^S) = ß2 = L2(S) = Y2.  If S = 1, 1^(8) = ß1 + ß2 = L2(S) - Yj + Yj 

and since ^2 ^ y2'   ßl = Yl' 

Assume the lemma is true for n-1. We want to prove it true Jor n. 

L, and L« are two forms on (a,,...,a ) and 1^(8) = L0(S) for any 12 1     n      1      ^ 

n-tuple S of O's and I's by assumption.  Now L can bo expressed as 

some K, + lt„a wl.are K, and K0 are forms on (a.,...,a ,).  Also L0 iZn       iz in-i / 

- M1 + M^a where R. and M„ are forms on (a ,...,a  ).  Let S be an 

arbitrary n-tuple whose n  component is 0 and let S' be the ( i-l) tuple 

which agrees with S on its first (n-1) components.  .'hen L^S) = K. (S') 

and L2(S) = M.^S').  But S" is an arbitrary (n-l)-tuple and L.(S) = L2(S) 

implies K (S') = M.(S1) so that by the induction assumption K. is 

identically equal to M^ -Now let S be an arbitrary n-tuple whose nth 

component is 1 and let S' the (n-l)-tuple which agrees with S on its 

first (n-1) components.  By reasoning similar to the previous situation, 

K + K2 is identically equal to M + M so that 1^=^ from which it 

follows that L = U.Q.E.D. 

/ 

- ■ -^- 
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Theorem 4.6.     An n-counter C  is cyclic  iff N =1  for  some  i. 

Proof:     If N1=I  for  some  i,  then C  is clearly cyclic. 

Assume C  is  cyclic.     Then for S any sequence of O's  and 

I's, there  is a j  so that Nj(S)=S by the definition of 

cyclic.     Let  i be  the  l.c.m.   of these  j's.     Then N  (S)=S 

for all S.     Now N1  is a  form on  {a},... ,an)  and  I  is  a  form 

on  (a   ,...,a  ).     Since Ni(S)=I(S)   for any n-'.uple S,  then N 

is  identically equal  to  I. ^ 

Theorem   !.7.     If  an n-counter C  is cyclic,   then N1=I  for  a 

smallest positive  integer  i.     Further  i --  l.c.m.   of  the cycle 

lengths of  C.     Hence  the  length of  each cycle divides   i. 

Proof:     Let  j  be  the  l.c.m.   of  the cycle  lengths of C.   Then 

N-,{S)=S  for  any output  S  since any S  is  in a cycle.     Hence, 

N-'=I  so  that  j>i.     If  j>i,   let ni  be  the  largest multiple 

of  i  less than j.     Then j-ni<i so that N:,~nl(S)   = N11"111 (Nni (S))   = 

N-* (S)   = S  for all  S.     This contradicts the fact  that  i     is 

the  smallest positive  integer  such that N1=I. 

Corollary 4.8.     If C  is a cyclic counter  and 1^=1  for p 

a prime,   then C has at  least one p-cycle and  all  the cycles 

of C are of  length p or  length 1. 

Corollary  4.9.     If C  is a counter whose N transformation  is 

a strict permutation,   then C is cyclic.     Further,   the  .'•ength 

of any cycle of C divides   (2n)! 

Proof:     In this  situation N is a permutation on 2n objects, 

hence an element of  S     .     So its order  i must divide the 
2n 

order of S0 which is (2n)!  But this i is the smallest 2n 

positive integer such that R =1. 

_». - ■ -^- __^M* 
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Corollary 4.10.  If C is cyclic, then 2n - k0 +  kl  
ci  + 

k c +..+ k c  where k. equals the number of cycles 

of length c and k0 is the number of cycles of length one. 

Note:  If N is a permutation transformation, then N =1 iff 

the matrix of N to the i— power is the identity matrix. 

If N is a linear transformation this has to be modified 

as follows. 

We assvme N is a linear transformation.  Then the columns 

of the matrix of N are in pairs and the transformation N 

can be read from its matrix.  For example, a^ bi? cc gives 
'10 00 01v 

01 00 10 
11 10 00 
00 01 00 
00 11 00 
00 00 00 

a + a+b, a -»- ä + b, b ^ b+c, :
J ♦ b+c, c-*ä, c ->a.  Call two 

matrices equivalent if they define the same transformation 

Another matrix equivalent to the one above is aa bb cc 
rio 00 ll-\ 
01 00 00 
01 10 10 
10 01 10 
10 11 00 

^10 00 00 J 

since this yields the transformation a-»-a+b+c+c = a+b since 

c + c = l, ä-^ä + b, b->b-«-c, b->b + c, C ■» a+b+b = a, c ^ a 

Then N1=I if and only if there is some matrix in the equiva- 

lence class of N1 which is the identiy matrix. 

Theorem 4.10.  Let C be an n-counter whose transformation 
is N.  Let j = max (minimum distance to cycle). 

all n-tuplesS 

If fc is the l.c.m. of the cycles of C, then k + j is the 
k+i  i 

smallest positive inteqer such that N  -l=NJ. 

k 

^3  
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Proof:  All the vertices of R which are in cycles = 

(N^fS) for any n-tuple S).  Hence Nk(N:'(S)) ^ N1'(S) 

so that Nk+:i(S) = N^S) and by lenuna 4.5, Nk+j = Nj. 

The proof of the fact that k+j is tne smallest positive 

integer for which this is so is as in Theorem 4.7.  (Note 

that when j=0, we have the special case N1=I discussed in 

Theorem 4.7). 

Corollary 4.11.  If k in the previous theorem is a prime 

P, then C has a cycle of length p and all cycles are either 

of length p or length 1. 

I 

*fcM I  I  ■ -^ ^ 
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Section 5.  The Group of a Counter 

We consider the symmetric group on n letters S n 

to act on the 2n letters a,,...,a .a.,...,a by having 1     n  1     n 

any permutation TT in S act on a,,...,a and simultan- 

eously in the same fashion on a,,...,a .  We let H be 

the group of permutation» on the 2n letters a,,...,an, 

a«r...ra generated by the above reprep&ntation of 

S and the transposition (a^a^).  H also contains the 

transpositions (a2,a2), (a3,a_),...,(an,an). 

Theorem 5.1 The order of H is nl 2 . 

Proof:  Consider the homomorphism of H onto S gotten 

by identifying a. and a. for all i, 1<  i < n.  That 

this mapping is a well-defined homomorphism onto S 

follows from the definition of H.  The kernel of this 

homomorphism is the subgroup of order 2 generated by 

the n transpositions (a^a.), 1<  i < n.  Hence the order 

of H = the order of S  times ?  = n! 2 . n 
Consider  an  n-counter C and  its defining  transfor- 

mations N.     N consists of n transformations cp . (a^ ,... ,an) , 

i=l,...,n where  a.   goes  into :p . (a,, ... ,an)   and cp i  is either 

a permutation,   linear  transformation or  a non-linear 

transformation of  the  form given  in  section  3.     We con- 

sider a permutation  IT  in H to  send  N into another N 

transformation by  sending a.   into  Tr(aj.)   and cp ^ (a^,... ,an) 

into 9 ^   (irCa,) , . . . ,Tr (a  )) . 

Theorem  5.2  If  TT  is   in H and N is  the transformation of an n- 

counter C,   then  Tr(N)   is also the  transformation of an n-counter. 
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Proof:  This follows from the fact that Tr(ai) = TT{ai). 

Clearly TT preserves peir.nutations, linear transformations 

and the special form of non-linear transformations which 

the N transformations of a counter can assume. 

Definition:  If C is an n-counter and N is its trans- 

formation, then the subgroup G of H which sends N onto 

itself is called the group of N. 

Definition:  Two n-counters C^ and C2 with transformations 

N, and N9 are called equivalent if N2 = rrd^) for some TT 

in H. 

Theorem  5.3.     If  an n-counter C has group G,   then the num- 

ber of  counters equivalent to C  is  2  xn! 
order of  G. 

Proof:     This  is  so  since every coset of G  in H corresponds 

to a distinct counter  equivalent to C and conversely. 

We  illustrate  these ideas with examples. 

Example  4.1 

N N'   =   I 
(a+b)   (b+c)   a C.L. 

(2,2) (3,3)        (1,1) 

(1,0,0) 
(1,1,0) 

(0,0,0)    (0,1,0) 

J      ^ 



^r^ -^ 
^ 

■ 28- 

If  IT =   (a,   a)   then    IT (N)   = ^  is as  follows 

N,  a 
a+b  b+c  a 

[af-plying TT to a ve have 

ä       so that 

„J-! 

a ] 
a+b 

(1,1,1) (0,0,0) 

(1,0,0) 
1,0,1) 

(0,0,1) 

(0,1,1) 

Note that R, can be obtained from R by complementing the 

coor 

C. L. 

•dinate of  each triple   (this  is  the permutation   (a,a)) 

2 
(2,2)     (3,3)       (1,1) 

The only permutation  in H sending N onto  itself  is 

the  identity.     Hence  there are  23.3!=  48  counters equiva- 

lent to N. 

Example  4.2 

C.   L. 
(2,2) 

N is _a b c 
a+b b+c b 

2_ 3 
(3,3) iTTTf 

N3   =  I 

R: 
(0,0,0) (0,1,0) 

.(1,0,0) (0,0,1) tlrl.U 

(1,1,0) 

(1,0,1) (0,1,1) 

• ■■ -^ ^^MMrtl 
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Here G is the group of order 2 consisting of the transposi- 

tion (a, a) and the identity.  Hence there are 24 counters 

equivalent to N.  Notice that complementing the first com- 

ponent yields an isomorphism of R. 

The permutation (a, b, c) produces the following counter 

N, equivalent to N. 

N 1 a 
b+c   a+c 

CL, 1 
(3,3) (1,1) 

(0,0,1) .(0,0,0) 

.(0,1,0)   (1,0,0)    (1,1,1) 

(0,1,1) 

(i,i;o) (1,0,1) 

/ 
14 

The points of R, could be calculated .irectly or by 

cyclically permuting the coordinates of R. 

Example 4.3 is oent into itself by (a, a) so that its 

group has order 2.  Hence there are 24 counters equivalent 

to it.  The group of example 4.4 is exactly I so that there 

are 48 counters equivalent to it. 

Theorem 5.4 Equivalent counters have isomorphic graphs and 

isomorphic groups. Also if N, and N2 are equivalent, then 

N^ = NJ iff Nj = N^. 

Proof:  If N, and N2 are equivalent counters and ■ is the 

element of H such that TT (N,) = N2/ then TI is the isomorphism 

which sends the graph of N, onto the graph of K2.  If G is 

the group of N2 then ir  G fT is the group of N1 so they are 

*t i i >\fc ■M*i 
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isomorphic. 

Theorem 5.5  If C is an n-counter, and G is its group, 

then each permutation in G is an isomorphism of the graph 

of C. 

Note that there can be isomorphisms of the graph which 

do  not arise from permutations in H. 

Since equivalent counters have isomorphic graphs, if 

one were to search through all n-counters, for a fixed n; 

to find which cycle lengths are possible, it is enough to 

examine only one n-counter in each equivalence class. To 

show how this might be done, we completely classify all 2- 

counters in section 6. 

J 
Mti 
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section 6.  The Classification of all 2-counters 

There are 16 different 2-counters.  All N for 2- 

counters are linear.  H here is the dihedral group of 

order 8.  H is non-abelian. 

1) 
r00    11 

M = 00    00 
11    00 
00    00 

N: G has order 2 and co-Ldins 
i+b       a+b        (a,b).    itence there are 4 

counters in this equivalence 
class. 

(1,0)       (0,1) 

(i,i) 

(OTO) 

2) 
M = 

"00    10" 
00    01 
11    00 
00   oo) 

N3=N2 

CL. 
(2,2)       (1,1) 

N:    _a_    _b 
a+b     a 

N3=I 

(1,1) 

' (0,0) 

G = I.    Hence there are 8 of 
these. 

C.L.     _±_ 2 
(2,2)      TTTT 

3) 

M ■ 

R: 

'00 10 
00 01 

110 00 
01 00 

(0,0) 

(1,1) 

IN: 

>». vl,0) 

if {0,1) 

b 
a 

C.L. 

G is a group of order 4 
generated by the permutation 
(a,b) and  (a,a)   (b,b).    Hence 
there are 2 of these 

(2,2) (1,1) 

4) 

M ■ 
roo or 
100 10 
lio oo 
101 oo- 

N: a 
b 

b 
5 

N4 = I. 

C.L. 

G is a group of order 4 generated 
by the pernutation (a, b, a, b). 
Hence there cure 2 of these. 

(2,2)        (1,1) 

 ) 
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R:  (0.0>^ 

(0 

These 4 cases add up to 16 counters.  Hence these are 

all.  Counters 3) and4) have permutation N's so that for these 

cases the matrix of N equals the matrix of M.  All counters 

in classes 2  3, and 4 are cyclic. 

A J-K flip-flop is a particular type of 2-input, 2-out- 

put finite-state automation. For more on this see [1] and 

[31. 
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